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The effect of small surface tension on a class of axisymmetric flows with suction
is studied numerically. The dynamic evolution of a blob of incompressible viscous
fluid, surrounded by air and drawn into an interior sink, is considered. The velocity
field of the viscous fluid is assumed to satisfy Darcy’s law and thus the motion is
that of a flow through porous media. The fluid interface motion is computed using a
highly accurate boundary integral method. This method combines recent numerical
techniques to achieve efficient and high-order space and time discretizations for this
type of flow. Through accurate computations, it is shown that, in the presence of small
surface tension, the dynamic behavior of the axisymmetric flows is very similar to
that of the (two-dimensional) Hele–Shaw counterparts. A long finger develops in
the fluid interface and forms a cone singularity when it reaches the sink before all
the fluid is sucked out. The finger bulges and develops a neck for sufficiently small
surface tension. The bulge–neck formation is enhanced by the additional compo-
nent of the mean curvature in the three-dimensional flow. However, its effect is not
strong enough to cause the interface to pinch off at the neck for the data considered
here. c© 2000 Academic Press
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1. INTRODUCTION

Suction-driven flows through porous media are of considerable interest to the oil industry.
In a recovery process, oil surrounded by water is extracted through a well (sink) via a suction
mechanism. Often, this type of flow is modeled by the two-dimensional (2-D) motion of
a viscous fluid through a narrow gap between two parallel plates in a device known as a
Hele–Shaw cell. The connection of these so-called Hele–Shaw flows with saturated flows
through porous media is Darcy’s law, which is assumed to govern the motion of both flows.
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Darcy’s law states that the velocity field is proportional to the gradient of the pressure. The
particular case of a Hele–Shaw flow in which a blob of viscous fluid such as oil, surrounded
by less viscous fluid, is driven through a sink has attracted considerable attention. Laboratory
experiments [16] have shown that the surrounding fluid encroaches upon the oil forming
long “fingers” which may reach the sink before all the oil is recovered.

Recently [7], Ceniceros, Hou, and Si investigated numerically the effects of small surface
tension in the fingering process that occurs in a Hele–Shaw flow with suction. They found
that an asymptotic finger shape is selected in the limit as surface tension goes to zero.
The fluid interface collapses, forming a corner at the tip of the finger when it reaches the
sink. It was also found in [7] that, for sufficiently small surface tension, the encroaching
finger develops a neck which also appears to asymptote to corners in the limit as surface
tension tends to zero. But there were no indications that the Hele–Shaw interface would
pinch off at the finger neck to create a topological singularity in the form of a bubble of the
less viscous fluid. The initial data considered in [7] were a circular interface offset from
a point sink. Since surface tension acts on the fluid interface by introducing a jump in the
pressure proportional to the mean curvature, it is natural to ask what the behavior of the
interface would be in a three-dimensional (3-D) Darcy flow for similar initial conditions.
Can topological singularities occur in 3-D for this particular type of flow? How does the
presence of an additional component of the mean curvature affect the fingering process?
Here, we investigate numerically these questions. We consider the 3-D axisymmetric Darcy
(potential) flow consisting of a blob of incompressible viscous fluid surrounded by air and
driven through a point sink located inside the blob.

The accurate computation of the axisymmetric flows described above is full of numerical
difficulties, especially in the presence of surface tension. Boundary integral methods are
a popular choice to compute accurately a certain class of free boundary problems which
includes potential flows. These methods reduce the dimension of the problem by involving
only variables on the fluid interface. However, this reduction is done at the expense of the
introduction of singular boundary integrals which are understood in the sense of principal-
value integrals. In 2-D motion, the boundary integrals can be desingularized and spectrally
accurate approximations may be obtained for closed or periodic interfaces in the horizontal
direction [17, 18]. In 3-D motion, the boundary integrals are much more difficult to treat.
In the case of axisymmetric flow, the integrands contain a complex combination of pole
and logarithmic singularities. Even if the leading-order singularities are extracted, some
derivative of the integrands will be singular and, as a result, standard quadrature rules will
have a nonsmooth discretization error. Moreover, as noted by Baker, Meiron, and Orszag
[3], the integrands change rapidly at the two poles where the surface intersects the axis of
symmetry. This makes the accurate evaluation of the principal-value integrals even more
difficult to achieve. It is important to note that a nonsmooth error (i.e., one with many
high frequency components whose amplitudes do not decay and are well above machine
precision) can quickly lead to numerical instability and cause the computations to break
down.

For the axisymmetric flow, de Bernadinis and Moore [5] proposed a quadrature rule for the
boundary integrals with a correction to the vortex ring method to obtain anO(h3 logh) ap-
proximation. In the vortex ring method the trapezoidal rule is used without the self-induced
(diagonal) contribution of each vortex ring. However, the de Bernadinis and Moore approxi-
mation (dBM) gives a nonsmooth error which degenerates toO(h) near the symmetry poles.
Nitsche [15] has designed a clever improvement to the dBM quadrature by constructing
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approximate integrands near the poles. By integrating the difference between the original
and the approximate integrands, Nitsche obtained a uniformO(h3) quadrature. Nitsche has
also shown that higher order quadratures are possible by improving the order of the approx-
imate integrands [14]. Nie and Baker [12] have also proposed accurate quadratures for the
evaluation of the boundary integrals in axisymmetric flow. Their approximations are based
on adaptive local quadratures near the poles. Here, we use Nitsche’s fifth-order quadra-
ture [14]. The high-order quadrature is needed for both accuracy and stability reasons. To
maintain numerical stability the nonsmooth components of the discretization error must
be removed, through numerical filtering, after each evaluation of the boundary integrals.
Unfortunately, for one of the cases we study, the fluid interface deforms the most precisely
at one of the symmetry poles. As a result, the accuracy of the quadrature, which is based
on a Taylor expansion around the poles, deteriorates. If the lower orderO(h3) quadrature
is used, the nonsmooth error becomes so large that it cannot be controled by numerical
filtering and, consequently, it leads to numerical instability and to a quick breakdown of the
computations.

Surface tension introduces additional difficulties to the computation of the dynamically
evolving fluid interface. It modifies the pressure on the interface by a term which is propor-
tional to the local mean curvature. As a result, a nonlinear term with high-order derivatives
is introduced to the interface governing equations through the mean curvature. This surface-
tension term induces a severe time step stability constraint for explicit time-marching meth-
ods. Hou, Lowengrub, and Shelley [9] have designed a technique to successfully remove
the severe stability constraint. The technique is based on a small-scale decomposition of the
governing equations and on the application of implicit–explicit time integration schemes.
Here, we use the method of Hou, Lowengrub, and Shelley implemented with a fourth-order
implicit–explicit multi-step scheme.

Our numerical results show that the axisymmetric flow with suction in the presence of
small surface tension behaves very similarly to the corresponding Hele–Shaw flow. The first
case we study is an initially spherical blob of incompressible viscous fluid surrounded by
air. The blob is drawn into an eccentric point sink inside it. Just as in the Hele–Shaw flows, a
narrow finger develops. The fingertip evolves into a cone and appears to develop a curvature
singularity when the interface reaches the sink. For sufficiently small surface tension, the
finger bulges and a well-defined neck forms at the top of the finger. The additional azimuthal
component of the mean curvature enhances the definition of the finger neck while smoothing
the interface there at the same time. However, this component of the curvature is not large
enough to induce the neck to pinch off. The second case we consider is the evolution of
a slightly perturbed spherical interface whose associated Hele–Shaw problem was studied
numerically by Nie and Tian [13]. As in the Hele–Shaw flow, two long fingers grow close
to the axis of symmetry and also appear to develop cones at their tips as they reach the sink.
For both initial data, we observe that the axisymmetric flow develops narrower fingers than
those found in the Hele–Shaw counterpart. This may be due to the stronger sink force in
the 3-D flow.

The organization of the rest of the paper is as follows. In Section 2, we present the
equations of motion for the axisymmetric flow through porous media in a boundary integral
formulation. We describe the numerical method in Section 3. The main idea to construct
the uniform order quadratures of Nitsche is outlined here. We also explain how to adapt the
technique of Hou, Lowengrub, and Shelley to obtain an efficient nonstiff time discretization
for the computation of the axisymmetric flow in the presence of surface tension. Several
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important numerical issues such as numerical stability and filtering are also discussed in
Section 3. As a test to the numerical method, we compute the evolution of an initially
spherical vortex sheet [12, 14]. Section 4 is devoted to presenting the numerical results on
the axisymmetric flow with suction along with some comparisons with the corresponding
Hele–Shaw flow. Concluding remarks are given in Section 5.

2. THE GOVERNING EQUATIONS

We consider an axisymmetric blob of incompressible viscous fluid surrounded by air or
gas whose density is so low (compared to that of the viscous fluid) that the motion of the
gas is unimportant. The velocity fieldu of the viscous fluid is given by Darcy’s law,

u = − k

µ
∇ p, (1)

wherek is the permeability of the medium,µ is the viscosity of the fluid, andp is the
pressure. The incompressibility of the fluid expressed as∇ ·u= 0 implies that the pressure
satisfies Laplace’s equation,

∇2 p = 0. (2)

The nonlinearity of the flow comes from the boundary conditions on the fluid interface (the
boundary of the fluid blob). Denoting the interface by0, we can write these conditions as

[u · n̂]|0 = 0, (3)

[ p]|0 = τκ, (4)

where [·] denotes the jump across the interface. Here,n̂ is the exterior unit normal to0, τ is
the surface tension coefficient, andκ is the mean curvature of the interface. The kinematic
boundary condition (3) states that the normal component of the velocity field is continuous
across the interface. This implies that particles on the interface remain there. The relation
(4), known as the Laplace–Young boundary condition, gives an account of how the presence
of surface tension modifies the pressure across the interface. As explained in [4], for an
actual porous medium, the quantities in (4) have the meaning of a statistical average taken
over the void space (pore) in the vicinity of the point considered. Thus, in general, the
surface tension coefficientτ depends locally on the geometry of each pore, on the degree
of saturation, and on the type of fluids involved. Here we restrict ourselves to the idealized
case whenτ is constant.

We assume that there is a point sink at the origin, inside the fluid blob. For large distances
away from the sink, the velocity field tends to the simple 3-D radial flow

u(X)→ Qs
X
|X|3 , as|X| → ∞, (5)

whereQs is the sink strength or suction rate (assumed negative). Since the flow is potential,
it can be described by the dynamics of the free interface0. Furthermore, we assume that
the flow is axisymmetric. Thus, the surface0 can be represented by its cross section with
the x–y plane, as depicted in Fig. 1 for the case of a spherical surface. At any timet , we
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FIG. 1. Spherical surface: (a) 3-D perspective and (b) curve representing the cross section of the flow in the
x–y plane.

write 0 in parametric form as(x(α, t), y(α, t)), whereα is a Lagrangian parameter. Both
x andy are 2π periodic functions inα. Note that, because of symmetry,(x(α, t), y(α, t))
with α ∈ [0, π ] suffices to describe the whole interface.

Taking into account the sink, we have that the radial (u) and axial (v) velocities are given
by [6]

u(α, t) = 1

2πx

∫ π

0
γ ′

y′ − y

ρ2

[
F(λ)− (y

′ − y)2+ x′2+ x2

ρ2
1

E(λ)

]
dα′

+ Qs
x

(x2+ y2)3/2
, (6)

v(α, t) = 1

2π

∫ π

0
γ ′

1

ρ2

[
F(λ)− (y

′ − y)2+ x′2− x2

ρ2
1

E(λ)

]
dα′

+ Qs
y

(x2+ y2)3/2
, (7)

whereρ2
1 = (y− y′)2+ (x − x′)2 andρ2

2 = (y− y′)2+ (x+ x′)2. Hereγ is the analogue
to the 2-D unnormalized vortex sheet strength; i.e., it is the jump in the tangential velocity
times

√
x2
α + y2

α. F(λ) andE(λ) are the complete elliptic integrals of the first and second
kind given by

F(λ) =
∫ π

2

0

dθ√
1− λ2 cos2 θ

,

E(λ) =
∫ π

2

0

√
1− λ2 cos2 θ dθ,

with λ2= 4xx′/ρ2
2. The integrals in (6) and (7) are understood as principal-value integrals.

Following the derivation for Hele–Shaw flow (see, for example, [7, 19]), we get a similar
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integral equation forγ at the cross section with thex–y plane:

γ (α, t) = 2

sα
(xαu+ yαv)+ Sκα. (8)

Here,S= τk/µ is a scaled surface tension parameter. Thus, the motion of the axisymmetric
flow through porous media with suction is described by (6), (7), and (8). We nondimen-
sionalize the equations of motion by settingQs=−1 and by taking the initial radius of the
interface to be 1. Finally, the mean curvature can be computed using the formula

κ = xαyαα − xααyα
s3
α

+ yα
xsα

, (9)

wheresα =
√

x2
α + y2

α. For future reference, we write the two components of the curvature
separately as

κ1 = xαyαα − xααyα
s3
α

, (10)

κ2 = yα
xsα

. (11)

We see that the governing equations are very similar to those for the 2-D Hele–Shaw
flow, except for the additional componentκ2 of the mean curvature and the integrands of
the boundary integrals. Also, the point sink has a different form.

3. THE NUMERICAL METHOD

There are two main components in obtaining a numerical solution to the initial value
problem given by (6), (7), and (8): an accurate discretization in space, which includes
the evaluation of the principal-value integrals and the solution of the integral equation
for γ , and an efficient and accurate time-marching scheme. The appropriate choice of
each discretization is nontrivial as the boundary-integral formulation is very sensitive to
numerical instabilities. In addition, in the presence of small surface tension, discretetizations
become even more sensitive owing to the ill-posedness of the underlying zero-surface-
tension problem [8, 10]. In this section we describe our discretization choices and illustrate
why high accuracy and delicate numerical filtering are required to compute reliably the
nonlinear interface evolution.

3.1. Evaluation of the Principle-Value Integrals

Unlike the case for the analogous 2-D motion, the integrands in the boundary integrals
for 3-D axisymmetric flow have a very complex structure involving poles and logarithmic
singularities. Even if the leading-order singularities are extracted, some derivative of the
integrands will be singular and, as a result, standard quadrature rules will have a nonsmooth
discretization error. Moreover, as noted by Baker, Meiron, and Orszag [3], the integrands
change rapidly at the two poles where the surface intersects the axis of symmetry. This
makes the accurate evaluation of the principal-value integrals for axisymmetric flow even
more difficult to achieve.
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Here, we use a high-order quadrature due to Nitsche [15]. This quadrature, originally
developed to achieve a uniformO(h3) discretization error, has been extended by Nitsche [14]
to yield anO(h5)error. This fifth-order quadrature is used for all the computations accounted
here. We present next only the main ideas in the construction of Nitsche’s quadrature. The
presentation is based on the description of the quadrature given in [14, 15]. We refer the
reader to these references for the details.

Each boundary integral can be written in the form

w(α, t) =
∫ π

0
G(α, α′, t) dα′, (12)

where

G(α, α′, t) = G(γ (α′, t), x(α, t), y(α, t), x(α′, t), y(α′, t)) (13)

is a function given in terms of the elliptic integralsF(λ) andE(λ) as expressed in Eq. (6)
and Eq. (7). Note that there is a differentG for each boundary integral. Expanding the
elliptic integrals aroundλ= 1 and performing a Taylor expansion aroundα′ =α, gives

G(α, α′, t) = Gs(α, α
′, t)+ c−1(α, t)

α′ − α +
∞∑

k=0

ck(α, t)(α
′ − α)k log |α′ − α|, (14)

whereGs(α, α
′, t) is a smooth function in bothα andα′. Consider a uniform mesh inα

given byαi = ih for i = 0, 1, . . . , N andh=π/N. Sidi and Israeli [18] show that∫ π

0
G(αi , α

′, t) dα′

= h
∑
j 6=i

G(αi , α j , t)+ hGs(αi , α j , t)+ c0(αi , t)h log
h

2π
+

2m∑
k=2

νkck(αi , t)h
k+1

+
2m+1∑
k=1

γk

[
∂k

∂α′k
G(αi , π, t)− ∂k

∂α′k
G(αi , 0, t)

]
hk+1+O(h2m+3) (15)

for any integerm≥ 1. The constantsνk andγk (not to be confused with the vortex sheet
strengthγ ) are given in [18]. The first term on the right-hand side of (15) corresponds to
the ring vortex approximation while the first three terms together give the de Bernadinis
and Moore quadrature. Quadratures of higher order may be constructed by approximating
the principal-value integral by the right-hand side of (15) for a givenm≥ 1. However, the
error for all these quadratures is nonuniform and deteriorates severely near the poles of the
symmetry axis (α= 0 andα=π ). As pointed out by Nitsche [15], this is because both the co-
efficientsck and the derivatives∂kG/∂α′k are not uniformly bounded. In fact, Nitsche [15]
shows that, asαi → 0, they behave asymptotically as

ck(αi , t) ∼ 1

αk−1
i

and
∂k

∂α′k
G(αi , 0, t) ∼ 1

αk−1
i

, (16)

for the boundary integral in the radial velocityu given by (6), and as

ck(αi , t) ∼ 1

αk
i

and
∂k

∂α′k
G(αi , 0, t) ∼ 1

αk
i

, (17)
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for the boundary integral in the axial velocityv given by (7). Similar estimates hold for
αi →π .

The main idea of Nitsche’s quadrature is to construct functionsB0 andBπ that approx-
imateG at the symmetry poles to get corrections for the nonuniform quadratures derived
from (15). The functionsB0 andBπ are obtained by Taylor expanding the integrandG about
the polesα= 0 andα=π . Let us denote any of the nonuniform quadrature rules byQ[·].
Nearα= 0,G− B0 is smoother thanG and consequentlyQ[G− B0]= Q[G]− Q[B0]
has a smoother discretization error thanQ[G]. Therefore, the approximation∫ π

0
G dα′ ≈ Q[G] − Q[B0] +

∫
B0 dα′ (18)

behaves better thanQ[G] nearα= 0. Note that

EQ[B0] =
∫

B0 dα′ − Q[B0] (19)

acts as a local correction to the error inQ[G]. A similar correctionEQ[Bπ ] can be obtained
nearα=π . The final approximation due to Nitsche [15] can be written as∫ π

0
G(αi , α

′, t) dα′ ≈ Q[G] + w1(αi )EQ[B0] + w2(αi )EQ[Bπ ], (20)

wherew1 andw2 are positive weight functions that satisfyw1+w2= 1. BothEQ[B0] and
EQ[Bπ ] can be computed efficiently with a very small overhead toQ[G]. Except for simple
factors, the corrections are time-independent and can be precomputed. As noted by Nitsche
[14], because of cancellation of digits, the time-independent terms in the corrections need to
be precomputed using quadruple precision to achieve theO(h5) quadrature. This quadrature
is obtained from (15) form= 1 and the appropriate correctionsEQ[B0] and EQ[Bπ ].

3.2. Time Integration: Removing the Surface-Tension-Induced Stiffness

Through the curvature, surface tension introduces high-order derivatives of the interface
position that couple nonlinearly and nonlocally with the flow. The presence of high-order
space derivatives causes a severe time-step stability constraint for explicit time integration
schemes. Hou, Lowengrub, and Shelley [9] have designed an ingenious technique to remove
the severe stability constraint usually referred to as stiffness. Their technique is based on the
fact that the stiffness arises only at the small scales of the numerical solution. Thus, the crux
of the method of Hou, Lowengrub, and Shelley is to perform a small-scale decomposition of
the equations of motion and to treat implicitly the leading-order terms at small scales. Here,
we adapt this technique to the axisymmetric flow equations. The implicit discretization is
simplified by expressing the position of the interface cross-section curve(x, y) in terms of
the local tangent angleθ = tan−1(yα/xα) and the arc-length metricsα =

√
x2
α + y2

α. In these
two new variables, the 2-D component of the mean curvature becomesκ1= θα/sα and the
interface evolution equations are given by

sαt = Tα − θαU, (21)

θt = 1

sα
(Uα + Tθα), (22)

whereT andU are the interface tangential and normal velocity respectively. The stiffness is
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hidden at the small spatial scales ofUα in theθ -equation (22). The leading-order behavior
of U at small scales can be obtained by noting that, forx 6= 0, the leading-order terms of
the integrands in the velocity [Eq. (6) and Eq. (7)] are

− 2xγ yα
s2
α(α
′ − α) and

2γ xα
s2
α(α
′ − α) (23)

for the radial and axial velocity respectively. Therefore, it can be easily shown that

U (α, t) ∼ 1

2sα
H[γ ](α, t), (24)

whereH is the Hilbert transform, which is diagonalizable by the Fourier transform as
Ĥ[ f ]=−i sign(k) f̂ . The notation f ∼ g means that the difference betweenf and g is
smoother thanf andg. Moreover,γ is dominated by the surface tension termSκ1 at small
scales; that is,

γ (α, t) ∼ Sκ1α = S

(
θα

sα

)
α

. (25)

Therefore,

U (α, t) ∼ S

2sα
H[(θα/sα)α](α, t). (26)

This dominant term at small scales simplifies if the arc-length metricsα is constant in space.
This can be achieved by exploiting the freedom in selecting the tangential velocity, as the
interface motion is solely determined by the normal velocityU . By letting

T(α, t) =
∫ α

0
θα′U dα′ − α

2π

∫ 2π

0
θα′U dα′, (27)

sα is maintained constant and equal to its mean at all times, i.e.,sα = L(t)/2π , whereL(t)
is the total length of the curve in the cross section at timet . The equations of motion can
now be written as

Lt = −
∫ 2π

0
θα′U dα′, (28)

θt = S

2

(
2π

L

)3

H[θ ]ααα + P, (29)

whereP represents lower order terms at small spatial scales.L can be updated by an explicit
method as Eq. (28) is free of stiffness. To remove the high-order stiffness, it is sufficient to
discretize implicitly the leading-order term in Eq. (29) and to treat the lower order termP
explicitly. This gives a linear time-step stability constraint, i.e.,1t ≤Ch, where1t is the
time-step size andC is a constant. Moreover, because of its constant coefficients, the implicit
term can be easily inverted by using the fast Fourier transform (FFT). Here, we use the
following fourth-order explicit–implicit method studied by Ascher, Ruuth, and Wetton [1]:

1

1t

(
25

12
θn+1− 4θn + 3θn−1− 4

3
θn−2+ 1

4
θn−3

)
= S

2

(
2π

Ln+1

)3

H[θn+1]ααα + 4Pn − 6Pn−1+ 4Pn−2− Pn−3. (30)
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L is updated first using a fourth-order explicit Adams–Bashforth multi-step scheme to obtain
Ln+1 before computingθn+1 via FFT. The spatial derivatives are computed also using FFT.

Note that, at each time step,γ has to be obtained from the integral equation (8) to compute
the velocities. As pointed out by Baker, Meiron, and Orszag [2], Eq. (8) can be solved
efficiently by fixed point iteration accelerated with a good initial guess. Here, we use a fourth-
order extrapolated initial guess constructed from previous time steps. It typically takes a
few iterations to obtain a convergent solution forγ when the interface is relatively smooth.

3.3. Filtering and Numerical Stability

To test our implementation of the fifth-order quadrature for the evaluation of the principal-
value boundary integrals, we compute the motion of a vortex sheet in a homogeneous
incompressible inviscid fluid in the absence of surface tension. This test example also
allows us to illustrate some important issues concerning numerical stability. We use the
following initial data:

x(α, 0) = cos(α), y(α, 0) = sin(α), γ (α,0) = cos(α).

These correspond to the cross section of a spherical sheet. This is the problem computed by
Nitsche [15], and by Nie and Baker [12], using two different quadratures. Note that for this
problem,γ is constant in time and only the interface position needs to be updated. Thus, the
computational cost is significantly less than that of the axisymmetric suction flow whereγ

has to be obtained from the integral equation (8) every time step.
Figure 2 shows the Fourier spectrum of the boundary integrals for the initial data. This

is a plot of the magnitude of the Fourier coefficients of the complex vortex sheet velocity
u+ i v [Eq. (6) and Eq. (7) withQs= 0]. The integrals are computed using Nitsche’s fifth-
order quadrature withN = 256 andN = 512. HereN is the total number of uniformly

FIG. 2. Fourier spectrum of the velocityu+ i v for the initial data of the spherical vortex sheet. The velocity
was computed using the fifth-order quadrature withN = 256 andN = 512.
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spaced points along the complete interface(α ∈ [0, 2π ]). Note that there is a plateau of
high-frequency modes for eachN. The plateau comes from the nonsmooth discretization
error. Its level decreases by approximately a factor of 32 when the resolution is doubled.
If this plateau is not removed, the coupling of the interface position with the velocity will
cause a rapid growth of the numerical solution high-frequency modes, and this will in turn
lead to numerical instability.

Krasny filtering [11] provides a way of removing the high-frequency modes introduced
by the nonsmooth discretization error in the velocity integrals. Given a grid-defined function
fi , the Krasny filter is implemented by taking the FFT offi , setting to zero all the Fourier
modes offi whose magnitude are below a certain level, and transforming back. Note that to
maintain accuracy, the filter level must be chosen as low as possible. Typically, it is selected
in the order of 103 times the round-off error.

Using theL–θ formulation given by (28) and (29) withN = 2048 points and1t =
0.0001, we compute the motion of the initially spherical vortex sheet. At every time step,
the velocity is filtered with a level set to 7.5× 10−11. All the computations presented
here are performed with standard double precision. In addition, to prevent the spurious
growth of round-off error high-frequency modes under the Kelvin–Helmholtz instability,
Krasny filtering is applied toθ with a filter level set to 10−13. Figure 3 shows the interface
profile, the mean curvature, and the spectrum of the velocity att = 1.09. Figure 3b gives
clear indications of a curvature singularity developing at the interface. The spectrum of the
velocity is free of any sign of numerical instability.

It is important to note that the vortex sheet remains smooth at the polesα = 0 and
α = π at all times. As we will see in the next section, this is not the case for the ax-
isymmetric flows we are interested in. Since the quadrature we use is based on a Taylor
expansion about the symmetry poles, the accuracy deteriorates as the poles lose regularity.
Very high spatial resolution is required to maintain the high-frequency components of the
nonsmooth discretization error below an acceptable filter level. In addition,γ couples with
the principal-value boundary integrals through the integral equation (8). This extra coupling
makes the computation more sensitive to numerical instability than that for a vortex sheet
whereγ is constant (zero surface tension) or explicitly determined (with surface tension).
In our implementation, the integral equation (8) is solved iteratively. The iteration process
is stopped when the difference between two subsequent iterations is less than a tolerance
set to 10−11. Krasny filtering is applied tou andv given by (6) and (7) in every iteration
used to solve forγ . The filter level foru andv is selected lower (smaller) than 10−11 to
guarantee the convergence of the iterations up to the tolerance level but high enough so that
the nonsmooth part of the error is removed. After the iterations are completed at every time
step,γ is also filtered with a filter level slightly higher than the iteration tolerance. In sum-
mary, filtering is applied as follows for the computation of the axisymmetric flow interface
motion:

• Filter θ every time step with a level set to 10−13. This is a typical filter level for double
precision computations.
• Filter u andv for every iteration used to solve forγ with a level equal to 10−12.
• Filter γ after the iterations are completed at every time step with a level set to 2.5×

10−11.
• Filter the boundary integrals (u andv) with a level set to 7.5× 10−11 to compute the

normal velocity. This filter level is higher because of the filtering applied toγ .
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FIG. 3. Vortex sheet test run. These plots correspond tot = 1.09 with N = 2048 and1t = 0.0001. (a) Cross
section of the vortex sheet. (b) Mean curvature versusα. (c) Fourier coefficient|ck| of the complex velocityu+ i v.

4. NUMERICAL RESULTS

We now present the numerical results obtained for two different sets of initial data: a
spherical interface centered at (0,−0.1, 0) (see Fig. 1) and a slightly perturbed spherical
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interface corresponding to one of the Hele–Shaw flows considered by Nie and Tian [13].
In both cases the sink is located at the origin. Most of the computations start withN = 512
and1t = 0.0001.N is doubled before all the Fourier modes of the tangent angleθ(α, t) are
above the filter level equal to 10−13. The time step1t is selected so that decreasing it further
would not produce any appreciable difference within plotting resolution in the curvature of
the interface. At the same time,1t is chosen sufficiently small so that with Krasny filtering
applied every time step, the growth of the high-frequency components introduced by the
discretization error in the boundary integrals is kept under control. This is in effect what
dictates the size of1t and not the surface tension stiffness, which has been removed by the
technique of Hou, Lowengrub, and Shelley [9]. Indeed, we find that, before the interface
begins to deform at one pole, the method we use has only the linear constraint1t ≤Ch.

We consider first the initially spherical interface. Figure 4 shows the interface cross-
section profile at different times forS= 0.01. A 3-D perspective of the interface for the
last computed timet = 0.179876 is presented in Fig. 5. Just as in the Hele–Shaw flow, a
thin finger develops. As it gets closer to the sink, the finger evolves rapidly into a cone. The
cone forms much earlier than the wedge in the Hele–Shaw flow. Also, the diameter of the
top of the finger is smaller for the axisymmetric flow. These differences may be due in part
to the stronger suction force in the 3-D flow. We stop the computation when the distance
of the cone tip to the sink is 0.0148. At this time, the formation of a corner singularity at
the tip of the cone as it reaches the sink is evident. This can be clearly appreciated in the
plot of the tangent angleθ(α, t) in Fig. 6. The angle appears to develop a discontinuity at
the fingertip (α = π ). The mean curvature at the tip at that time is around−671. We use
N = 4096 and1t = 5× 10−8 for the last stage of the computation. This is the maximum
resolution we can afford and, as we explain next, it is also the minimum resolution needed
to compute the motion up to this stage.

FIG. 4. Evolution of the initially spherical blob of fluid withS= 0.01. The interface profiles, from the outer
perimeter inwards, correspond to the timest = 0, 0.1, 0.15, 0.171, 0.1768, 0.1786, 0.1795, 0.1798, and 0.179876.
N = 4096 and1t = 5× 10−8 for the last stage of the motion.
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FIG. 5. The fluid surface forS= 0.01 at t = 0.179876. (a) 3-D perspective. (b) Cutaway plot. The cross
marks the position of the sink.

As mentioned before, the accuracy in the evaluation of the boundary integrals in the
equations of motion relies on the smoothness of the interface at the symmetry polesα = 0
and α = π . However, for the initial data we just considered, the interface is the least
smooth, and eventually singular, precisely at one of the poles where the finger develops.
As a result, we are forced to increase the spatial resolution to maintain accuracy and to
keep the nonsmooth discretization error in the approximation of the boundary integrals
below our filter level. Figure 7 shows the spectrum of the normal velocity for two different
resolutions att = 0.1723, right after the interface begins to deform at the north poleα =
π . As illustrated by this figure, it is necessary to useN = 1024 to have the plateau of

FIG. 6. Behavior of the tangent angleθ(α, t) around the finger tip (α = 0) as the interface is about to collapse,
for S= 0.01. The tangent angle, plotted againstα at the timest = 0.17980, t = 0.17985, andt = 0.179876,
appears to develop a discontinuity.N = 4096 and1t = 1× 10−7 for t = 0.17980 andt = 0.17985.N = 4096
and1t = 5× 10−8 for t = 0.179876.
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FIG. 7. The Fourier coefficients|ck| of the normal velocity att = 0.1723: (a)N = 512 and (b)N = 1024.

high-frequency components below the filter level. Note that this happens well before all the
Fourier modes of the numerical solution have been used for theN = 512 resolution.

An additional factor that makes our computation very sensitive to numerical instability is
the coupling ofγ with the principal-value boundary integrals. This coupling occurs through
the integral equation, which is solved forγ iteratively every time step. After the iterations
are completed at every time step, Krasny filtering is also applied toγ . The time step1t is
selected sufficiently small so that, with Krasny filtering applied toθ andγ every time step,
the growth of the discretization error in the boundary integrals is kept under control. Figure 8
shows that a very small1t is required to suppress the growth of unstable high-frequency
modes in the normal velocity.

We now decrease the surface tension to the valueS= 4× 10−4. Figure 9 shows the
interface cross-section profile at various times. The developed finger now clearly bulges
and a well-defined neck is observed. As remarked in the introduction, this interface behavior
is reminiscent of what has been observed for the 2-D Hele–Shaw flow with suction [7]. In
the Hele–Shaw flow the blob of fluid, just as in the axisymmetric flow, obeys Darcy’s law but
it is confined to a 2-D motion by two closely spaced parallel plates. It is thus interesting to
examine how the 3-D (axisymmetric) flow compares with the 2-D (Hele–Shaw) counterpart.
A comparison with the Hele–Shaw flow for the same value of surface tension appears in
Fig. 10 (see [7] for the details of the Hele–Shaw study). The interfaces are not plotted at
the same timet but when the tip of the finger reaches 0.0865 for both cases. The finger in
the axisymmetric flow shows a more visible bulging and a more pronounced neck. A cur-
vature plot for these two interfaces given in Fig. 11 shows that the 2-D mean curvatureκ1 is
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FIG. 8. The Fourier coefficients|ck|of the normal velocity att = 0.17987 withN = 4096: (a)1t = 2× 10−7;
(b)1t = 1× 10−7; (c)1t = 5× 10−8.
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FIG. 9. Evolution of the fluid interface forS= 4× 10−4. (a) The interface cross-section profile plotted at
t = 0.1729, 0.1739, 0.1749, 0.1754, 0.1756, and 0.175734. (b) A close-up of the finger formation.N = 4096 and
1t = 2× 10−8 for the last stage of the motion.

more singular in the axisymmetric flow. In Fig. 11, the two symmetric spikes correspond to
the location of the neck while the two small dips next to the spikes correspond to the bulging
area. The large negative spike atα = π points to the formation of a corner singularity.

In Fig. 12, we plot the two principal curvaturesκ1 andκ2 and the mean curvatureκ =
κ1+ κ2 for the interface in the axisymmetric flow withS= 4× 10−4 at t = 0.175734.
From this plot, we see the effect of the curvature in the axial direction. At the location of
the neck,κ1 has a positive spike whileκ2 is negative. This produces a reduced total mean
curvature at the neck. But at the bulging area, immediately next to the neck, bothκ1 andκ2

are negative and thus, together, enhance the finger bulging. For Hele–Shaw flow, there is an
asymptotic shape of the fingers at the late stage of the interface motion [7]. We compare in

FIG. 10. (a) Cross-section profile of the axisymmetric flow att = 0.175734 and the Hele–Shaw flow at
t = 0.2922625 with the same surface tensionS= 4× 10−4. (b) A close-up look of the fingers. The solid curve
corresponds to the axisymmetric flow and the dashed line corresponds to the Hele–Shaw flow.N = 4096 and
1t = 2× 10−8 for the axisymmetric flow.N = 2048 and1t = 2.5× 10−6 for the Hele–Shaw flow.
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FIG. 11. Comparison of the interface 2-D mean curvature (κ1) for the axisymmetric and the Hele–Shaw flows
with S= 4× 10−4. (a) κ1 versusα for the axisymmetric flow att = 0.175734.N = 4096 and1t = 2× 10−8.
(b) κ1 versusα for the Hele–Shaw flow att = 0.2922625.N = 2048 and1t = 2.5× 10−6.

Fig. 13 the interface profile for the axisymmetric flow forS= 4× 10−4 at t = 0.175734
and forS= 8× 10−4 at t = 0.176129 when the fingertip reaches around 0.086. The finger
width varies very little away from the neck and an asymptotic shape is conceivable based
on the similar behavior observed in the Hele–Shaw flow.

Next, we consider the second initial data, which are generated by a particular exact
solution of a Hele–Shaw flow with suction in the absence of surface tension. Unlike the
3-D axisymmetric case, the Hele–Shaw flow may be described in terms of a conformal map
from the interior (or exterior) of the unit disk onto the fluid blob. The circular boundary is
mapped to the interface. Our second initial interface is produced by the conformal mapping

FIG. 12. Axisymmetric-flow curvature components att = 0.175734 forS= 4× 10−4. The solid line corre-
sponds toκ = κ1 + κ2. The dashed line corresponds toκ1 (2-D mean curvature) and the dashed-dotted line toκ2.
N = 4096 and1t = 2× 10−8.
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FIG. 13. Comparison of the interface finger in the axisymmetric flow for two different values of surface
tension,S= 4× 10−4 at t = 0.175734 andS= 8× 10−4 at t = 0.176129.N = 4096 and1t = 2× 10−8 for
S= 4× 10−4. N = 4096 and1t = 2.5× 10−8 for S= 8× 10−4.

[13]

f (ω) = αω + βω

1− ω0ω
. (31)

Here f = x + iy and the coefficientsα, β, andω0 are determined by the system of equations
(see [13] for details)

αβ + α2 = r 2
1 + 1/2, (32)

β2(
1− ω2

0

)2 + αβ = r 2
2, (33)

ω0

1− ω2
0

β + ω0α = r1+ r2, (34)

with r1 = 0.7 andr2 = 0.1. After solving (32), (33), and (34) numerically, we getα≈ 0.9902,
β ≈ 0.0094, andω0≈ 0.78799. The mappingf generates a slightly perturbed circular pro-
file in thex–y plane. The point sink is, as before, at the origin. This is one of the sets of initial
data considered by Nie and Tian [13] for a Hele–Shaw flow with suction. In the absence of
surface tension, the Hele–Shaw interface separates into one big and one small circle. Nie
and Tian refer to this as the “big and small circle” data. One reason we chose this initial
interface is that the fingers will not form at the poles and thus the quadrature maintains its
accuracy better.

Figure 14 presents the Hele–Shaw interface at various times with surface tensionS=
0.002. Two long fingers form and approach the sink at the same pace. Each finger develops
a corner at its tip when it touches the sink. In our computation for the axisymmetric flow,
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FIG. 14. Evolution of the “big and small circles” initial interface withS= 0.002 for a Hele–Shaw flow. The
interface profiles, from the outer perimeter inwards, correspond to the timest = k× 0.05 for k = 0, . . . ,6; t =
0.342+ k× 0.04, for k = 0, . . . ,4; andt = 0.355388.N = 4096 and1t = 1× 10−6 for the last stage of the
motion.

FIG. 15. Evolution of the fluid interface in the axisymmetric flow for the slightly perturbed sphere corre-
sponding to the 2-D “big and small circles” initial data withS= 0.002. The curves, from the outer perimeter
inwards, correspond to the timest = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.279, 0.2815, 0.2825, 0.283, and 0.283179.
N = 4096 and1t = 5× 10−7 for the last stage of the motion.
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FIG. 16. The fluid interface for the slightly perturbed spherical initial surface (“big and small circle” data)
for S= 0.002 att = 0.179876. (a) 3-D perspective. (b) Cutaway plot.

we start withN = 256 points and we are able to use all the modes of the numerical solution
before we double the number of points.

Figure 15 pictures the axisymmetric flow interface at various times forS= 0.002. Similar
to the Hele–Shaw flow, the interface forms two long fingers which are drawn into the sink. We
stop our computation att = 0.283179. At this stage we useN = 4096 and1t = 5× 10−7.
Continuing the computation requires usingN = 8192 points and turns out to be prohibitively
expensive as the number of iterations to solve forγ also increases. The 3-D perspective of
the fluid interface att = 0.283179 is shown in Fig. 16. The sequence of pictures presented
in Fig. 17 contrasts the differences between the Hele–Shaw and the axisymmetric flow
interfaces. Note that in the axisymmetric flow the central bulb is wider but the fingers are
thinner.

FIG. 17. Comparison of the axisymmetric flow att = 0.283179 with the Hele–Shaw flow att = 0.3542.
(a) Axisymmetric flow. (b) Hele–Shaw. (c) Both interfaces; solid line is the axisymmetric flow and dashed line is
the Hele–Shaw flow.N = 4096 and1t = 5× 10−7 for the axisymmetric flow.N = 2048 and1t = 5× 10−6 for
the Hele–Shaw flow.
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FIG. 18. Cross-section interface profiles showing the evolution of the axisymmetric flow for the slightly
perturbed spherical initial data forS= 5× 10−4 at t = 0.2625, 0.2725, 0.2735, 0.2745, 0.2755, and 0.276152.
N = 2048 and1t = 2× 10−6 for the last stage of the computation.

We now decrease the surface tension to the valueS= 5× 10−4. Figure 18 shows the
axisymmetric flow interface at different times as it evolves. Owing to the growth of the round-
off error noise, and to the interface singular behavior, obtaining well-resolved computations
for such small values of surface tension is extremely difficult. We compare the profile of
the interfaces forS= 5× 10−4 and S= 2.5× 10−4 in Fig. 19 when they reach around

FIG. 19. Comparison of the interface profiles for the axisymmetric flow withS= 5× 10−4 at t = 0.2745
andS= 2.5× 10−4 at t = 0.275. (a) Cross-section profile. The solid line corresponds toS= 5× 10−4 and the
dashed line corresponds toS= 2.5× 10−5. (b) Close-up look at the interface fingers. The inner curve is for
S= 2.5× 10−4, but it has been translated to align with theS= 5× 10−4 fingers.N = 2048 and1t = 2× 10−6.
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the same level iny. The oscillation next to the fingers is likely due to the influence of
noise. Figure 19b shows the close-up plots of the two fingers. We shift the fingers for
S= 2.5× 10−4 in thex direction to align them with theS= 5× 10−4 fingers to ease the
comparison. ForS= 5× 10−4, the narrowest width for the finger is about 0.1, and it is
about 0.06 forS= 2.5× 10−4.

5. CONCLUSIONS

The accurate computation of axisymmetric suction flow in the presence of surface tension
requires a combination of numerical techniques to overcome the difficulties inherent to the
problem. On one hand there is the numerical stiffness introduced by surface tension; on the
other hand there is the lack of smoothness of the error produced by the quadrature rules for
the (singular) principal-value integrals. While the surface-tension-induced stiffness can be
effectively removed by the application of the technique of Hou, Lowengrub, and Shelley [9],
the nonsmooth error coupled with the dynamic variables can quickly lead to strong numerical
instability and to a computation breakdown. We have shown here that the combination of
high accuracy, both in space and time, and numerical filtering can be used to successfully
suppress the unstable growth of the error.

Our series of computations demonstrate that the dynamic behavior of the axisymmetric
flow interface in the presence of small surface tension is very similar to that of the corre-
sponding (2-D) Hele–Shaw counterpart. The additional component of the mean curvature
in the 3-D flow has a mild effect on the fingering process in the flows considered here and
no topological singularity is observed. Of course, this does not exclude the possibility that
a singularity of this type may form for different initial data or suction conditions.
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